A Priori Analysis for the Semi{discrete Approximation to the Nonlinear Damped Wave Equation

نویسنده

  • Catherine Wilkins
چکیده

We study the second{order nonlinear damped wave equation semi{discretised in space using standard Galerkin nite element methods. Denoting the analytical solution and the corresponding nite element solution to the given problem by u and u h respectively, we derive an optimal L 2 (() error estimate of the form max t20;T] ku (t) ? u h (t)k C (u) h m ; for (x; t) 2 0; T], where R d ; C is a positive constant depending on u, h is the grid parameter, and m > 1 + d=2, where m ? 1 is the degree of the piecewise polynomials in the nite element test space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

Finding the Optimal Place of Sensors for a 3-D Damped Wave Equation by using Measure Approach

In this paper‎, ‎we model and solve the problem of optimal shaping and placing to put sensors for a 3-D wave equation with constant damping in a bounded open connected subset‎ ‎of 3-dimensional space‎. ‎The place of sensor is modeled by a subdomain‎ ‎of this region of a given measure‎. ‎By using an approach based on the embedding process‎, ‎first‎, ‎the system is formulated in variational form;...

متن کامل

Nonlinear damped partial differential equations and their uniform discretizations

We establish sharp energy decay rates for a large class of nonlinearly first-order damped systems, and we design discretization schemes that inherit of the same energy decay rates, uniformly with respect to the space and/or time discretization parameters, by adding appropriate numerical viscosity terms. Our main arguments use the optimal-weight convexity method and uniform observability inequal...

متن کامل

Dynamical Properties for a Relaxation Scheme Applied to a Weakly Damped Non Local Nonlinear Schrödinger Equation

We apply a semi-discrete in time relaxation scheme to a weakly damped forced nonlinear Schrödinger system. This provides us with a discrete infinite-dimensional dynamical system. We prove the existence of a global attractor for this dynamical system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999